Sparse Tensor Galerkin Discretization of Parametric and Random Parabolic PDEs - Analytic Regularity and Generalized Polynomial Chaos Approximation

نویسندگان

  • Viet Ha Hoang
  • Christoph Schwab
چکیده

For initial boundary value problems of linear parabolic partial differential equations with random coefficients, we show analyticity of the solution with respect to the parameters and give an a priori error analysis for N-term generalized polynomial chaos approximations in a scale of Bochner spaces. The problem is reduced to a parametric family of deterministic initial boundary value problems on an infinite dimensional parameter space by Galerkin projection onto finitely supported polynomial systems in the parameter space. Uniform stability with respect to the support of the resulting coupled parabolic systems is established. Analyticity of the solution with respect to the countably many parameters is established, and a regularity result of the parametric solution is proved for both compatible as well as incompatible initial data and source terms. The present results imply convergence rates and stability of sparse, adaptive space-time tensor product Galerkin discretizations of these infinite dimensional, parametric problems in the parameter space recently proposed in [C. Schwab and C. J. Gittelson, Acta Numer., 20 (2011), pp. 291–467; C. J. Gittelson, Adaptive Galerkin Methods for Parametric and Stochastic Operator Equations, Ph.D. thesis, ETH Zürich, 2011].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analytic Regularity and GPC Approximation for Control Problems Constrained by Linear Parametric Elliptic and Parabolic PDEs

This paper deals with linear-quadratic optimal control problems constrained by a parametric or stochastic elliptic or parabolic PDE. We address the (difficult) case that the number of parameters may be countable infinite, i.e., σj with j ∈ N, and that the PDE operator may depend non-affinely on the parameters. We consider tracking-type functionals and distributed as well as boundary controls. B...

متن کامل

Sparse tensor Galerkin discretizations for parametric and random parabolic PDEs I: Analytic regularity and gpc-approximation

For initial boundary value problems of linear parabolic partial differential equations with random coefficients, we show analyticity of the solution with respect to the parameters and give an apriori error analysis for sparse tensor, space-time discretizations. The problem is reduced to a parametric family of deterministic initial boundary value problems on an infinite dimensional parameterspac...

متن کامل

Sparse tensor discretizations of elliptic PDEs with random input data

We consider a stochastic Galerkin and collocation discretization scheme for solving elliptic PDEs with random coefficients and forcing term, which are assumed to depend on a finite, but possibly large number of random variables. Both methods consist of a hierarchic wavelet discretization in space and a sequence of hierarchic approximations to the law of the random solution in probability space....

متن کامل

Optimality of adaptive Galerkin methods for random parabolic partial differential equations

Galerkin discretizations of a class of parametric and random parabolic partial differential equations (PDEs) are considered. The parabolic PDEs are assumed to depend on a vector y = (y1, y2, ...) of possibly countably many parameters yj which are assumed to take values in [−1, 1]. Well-posedness of weak formulations of these parametric equation in suitable Bochner spaces is established. Adaptiv...

متن کامل

Convergence rates for sparse chaos approximations of elliptic problems with stochastic coefficients

A scalar, elliptic boundary-value problem in divergence form with stochastic diffusion coefficient a(x, ω) in a bounded domain D ⊂ Rd is reformulated as a deterministic, infinite-dimensional, parametric problem by separation of deterministic (x ∈ D) and stochastic (ω ∈ Ω) variables in a(x, ω) via Karhúnen–Loève or Legendre expansions of the diffusion coefficient. Deterministic, approximate solv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Math. Analysis

دوره 45  شماره 

صفحات  -

تاریخ انتشار 2013